Luz
Release 1.0.0

Jaidan

Aug 25, 2023

CONTENTS:

1 Benifits over “theos’” and “dragon” 3
LT Speed o e e 3
1.2 Source Code Structure i i i e e e e e e e 4

Luz, Release 1.0.0

Luz is a build system for Apple Darwin-based systems. It’s name is derived from the Spanish word for “light.” It’s
meant to be a lightweight, drop in replacement for other build systems such as Dragon and Theos.

CONTENTS: 1

Luz, Release 1.0.0

2 CONTENTS:

CHAPTER
ONE

BENIFITS OVER “THEOS” AND “DRAGON”

Note: Luz is a work-in-progress project. Features will change, and bugs will be fixed. If you find a bug, please report
it on the GitHub repository.

1.1 Speed

Luz is written in pure Python, and only uses libraries that I've created myself in its code. This means that it’s very fast.
Luz especially shines when building projects with submodules, as it can build all of the submodules in parallel. This
means that building a project only takes as long as the longest build time of any of the submodules.

Below you can find a benchmark of Luz vs. Theos, using the time comparison tool hyperfine. The same tweak was
built (clean) with both build systems.

X X) B zsh

Luz/TestTweaks/testtweak
=» hyperfine "luz build -c" "make clean package"
: luz build —c
Time (mean * o): 529.2 ms 74.3 ms [User: 9.4 ms, System: 167.7 ms]

Range (min .. max): 465.9 ms .. 706.1 ms

: make clean package
Time (mean * o): 3.740 s * .143 s [User: 1.647 s, System: 1.342 s]
Range (min .. max): 3.668 s ..

Warning: The first benchmarking run for this command was significantly slower
than the rest (4.139 s). This could be caused by (filesystem) caches that were n
ot filled until after the first run. You should consider using the '—--warmup' op
tion to fill those caches before the actual benchmark. Alternatively, use the '—
—prepare' option to clear the caches before each timing run.

'luz build -c' ran
7.07 + 1.03 times faster than 'make clean package
Luz/TestTweaks/testtweak took 42s
-

Note: This benchmark was ran on a 2020 MacBook Pro with an M1 processor, 8 GB of RAM, and a 256 GB SSD.

As you can see, Luz is much faster than Theos, and is able to build the same project in less than half the time.

Luz, Release 1.0.0

1.2 Source Code Structure

Each of Luz’s modules have a different source file, which are all subclassed from a main class called Module. This
allows for easy extensibility, and allows for the creation of new modules without having to modify the core of the build
system.

1.2.1 Setup

Installation

To install Luz, run the following command in your terminal:

$ python -c "$(curl -fsSL https://raw.githubusercontent.com/LuzProject/luz/main/install.
~py)"

This will install Luz and all of its dependencies.

Options

You can call the install script with the following options:

Option Type | Description

-ns, --no-sdks Flag | Whether or not to install the SDKSs. If this is set, you will need to install
the SDKs manually.

-u, --update Flag | Update Luz. (You can use --ref to specify a different ref to update
to.)

-r, --ref String Ref of luz to install. This can be a branch, tag, or commit hash. De-
faults to main.

Notes

e If you are on Windows, you will need to install the Windows Subsystem for Linux (WSL). You can find instruc-
tions on how to do this here.

* If you are on macOS, you will need to install Xcode and the Xcode Command Line Tools.

1.2.2 Commands

Luz is a command line tool. It is used to create, build, run, and test Luz projects.

4 Chapter 1. Benifits over “theos” and “dragon”

https://learn.microsoft.com/en-us/windows/wsl/install

Luz, Release 1.0.0

build

Builds a project using the LuzBuild in the working directory.

Option Type | Description
-c/ --clean Flag | Whether or not to clean the build directory before building.
-p/ --path Flag | Path to the directory to build. (i.e. 1luz build -p /path/to/
project, defaults to the current working directory)
-m/ --meta Flag | Add meta information to the build. (.e. luz build -m
release=true)
verify
Verifies the structure of luz.py.
Option Type | Description
-p/ --path Flag | Path to the directory to verify. (i.e. luz verify -p /path/to/
project, defaults to the current working directory)
gen
Generate a project.
Option Type | Description
-t/ --type String The type of project to generate. (tweak if not specified)

1.2.3 Generation

Luz comes with a built-in project generator called LuzGen. It can be used to create a new project with the following

command:

$ luz gen

This command will walk you through the steps to create a new project. First, it will ask you what kind of project you
want to generate. Then, you can choose from different languages, such as Objective-C, Swift or Assembly. Finally, you
enter project metadata, such as the name, author, version, etc. Below, you can find an example of how to use LuzGen.

1.2. Source Code Structure

Luz, Release 1.0.0

1.2.4 luzconf.py Formatting

Luz uses a Python file to define the settings for the build. Python is used so that compile-time variables can be specified,
much like a Makefile. The file is called luzconf.py and is located in the root of your project.

LuzGen will automatically generate a luzconf. py file for any project that you create with it. It’s not recommended to
create your own luzconf.py, and you should only do so if you know what you’re doing.

Meta

This is where you define the settings for the build, such as the SDK, the architectures to build for, and the clang path.

Meta variables are defined in a class called Meta that can be imported from luz.

Variable Type | Description

debug BoolgaiWhether or not to build a debug version of the package. (true if not
specified)

release BoolgaiWhether or not to build a release version of the package. (false if not
specified)

sdk String SDK path to use for building. (uses xcrun to find an SDK if not spec-
ified)

prefix String Prefix to use for compilation commands. (/ if not specified)

cc String Path to clang to use for compilation. (Finds clang in PATH if not
specified)

swift String Path to swift to use for compilation. (Finds swift in PATH if not
specified)

rootless String Whether or not to make a rootless DEB archive. (true if not specified)

compression String Command to use to compress the DEB archive. (xz if not specified)

pack String Whether or not to pack the DEB archive. (true if not specified)

archs List | List of architectures to build for. (['arm64', 'armé64e'] if not spec-
ified)

platform String Platform to build for. Can be macosx, iphoneos or watchos.
(iphoneos if not specified)

min_vers String Minimum version to build for. (15 .0 if not specified)

Control

This is where you define the settings for the control file.

Control variables are defined in a class called Control that can be imported from luz.

Variable Type | Description
id String ID of the package.
name String Name of the package.
author String Author of the package.
maintainer String Maintainer of the package.
version String Version of the package.
section String Section of the package.
depends List | Dependencies of the package.
architecture String Architecture of the package.
description String Description of the package.

6 Chapter 1. Benifits over “theos” and “dragon”

Luz, Release 1.0.0

Additional control options can be found here.

Scripts

This is where maintainer scripts are defined.

Scripts are defined in a class called Script that can be imported from luz.

Variable Type | Description
type String Type of script to run. Can be preinst, postinst, prerm, postrm.
path String Path to the script to copy. (None if not specified)
(Op-
tional
content String Content of the script to copy. (None if not specified)
(Op-
tional

Please note that either path or content must be specified. If both are specified, path will be used.

Modules

Modules are where you define the files to compile and the settings for the build.

Modules are defined in a class called Modules that can be imported from luz.

Variable Type | Description

type String Type of module to build. (tweak if not specified)

c_flags List | Flags to pass to clang when compiling C files.

swift_flags List | Flags to pass to swift when compiling Swift files.
linker_flags List | Flags to pass to the linker.

optimization String Optimization level to use for clang. (0 if not specified)
warnings List | Warnings flags to pass to clang. (["-Wall"] if not specified)
ent_flags List | Entitlement flags to pass to 1did. (["-S"] if not specified)
use_arc BoolgaiWhether or not to use ARC for clang. (true if not specified)
only_compile_changed BooleaiWhether or not to only compile changed files. (true if not specified)
bridging_headers List | List of bridging headers to use for swift.

frameworks List | List of frameworks to link against.
private_frameworks List | List of private frameworks to link against.
libraries List | List of libraries to link against.
before_stage Callabl®unction to run before staging.
after_stage Callabl#unction to run after staging.

Additional module options can be found here.

1.2. Source Code Structure

https://github.com/LuzProject/luz/tree/main/luz/config/components/control.py#L26/
https://github.com/LuzProject/luz/tree/main/luz/config/components/module.py#L35/

Luz, Release 1.0.0

Submodules

Submodules are where you define paths to directories with luz. py files to include in your project.

Submodules are defined in a class called Submodule that can be imported from luz.

Variable Type | Description

path String Path to the submodule.

inherit String Whether or not to inherit non-specified meta options from the parent
project. (true if not specified)

Example luzconf.py

from luz import Control, Meta, Modules, Script, Submodule

define meta options

meta = Meta(
release=True,
archs=['arm64', 'arm6de'],
cc="/usr/bin/gcc’,
swift="'/usr/bin/swift',
compression="zstd',
platform="iphoneos"',
sdk="~/.1uz/sdks/iPhone0S14.5.sdk",
rootless=True,
min_vers='15.0"

define control options

control = Control(
id="com. jaidan.demo"',
name="LuzBuildDemo"',
author="Jaidan',
maintainer="'Jaidan',
description="LuzBuild demo',
section='Tweaks",
version='1.0.0",
depends=['firmware (>= 15.0)', 'mobilesubstrate'],
architecture="iphoneos-arm64'

)

define scripts

scripts = [
Script(type="postinst', path='./scripts/postinst'),
Script(type="prerm', path='./scripts/prerm')

]

define modules
modules = [

Module(
name="'TestTweak',
filter={

(continues on next page)

8 Chapter 1. Benifits over “theos” and “dragon”

Luz, Release 1.0.0

(continued from previous page)

]

'bundles': ['com.apple.SpringBoard']
1,

files=["'Tweak.xm']

define submodules
submodules = [

]

Submodule(path="./Preferences")

1.2. Source Code Structure

	Benifits over “theos” and “dragon”
	Speed
	Source Code Structure
	Setup
	Installation
	Options
	Notes

	Commands
	build
	verify
	gen

	Generation
	luzconf.py Formatting
	Meta
	Control
	Scripts
	Modules
	Submodules
	Example luzconf.py

